University of Cambridge > Talks.cam > Probability > Stochastic homogenization in amorphous media and applications to exclusion processes

Stochastic homogenization in amorphous media and applications to exclusion processes

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Perla Sousi.

We consider random walks on marked simple point processes with symmetric jump rates and unbounded jump range. Examples are given by simple random walks on Delaunay triangulations or Mott variable range hopping, which is a fundamental mechanism of phonon–induced electron conduction in amorphous solids as doped semiconductors. We present homogenization results for the associated Markov generators. As an application, we derive the hydrodynamic limit of the simple exclusion process given by multiple random walks as above, with hard–core interaction, on a marked Poisson point process.

This talk is part of the Probability series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2019 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity