University of Cambridge > > Isaac Newton Institute Seminar Series > Self-organization of patchy colloidal particles: 2 & 3D

Self-organization of patchy colloidal particles: 2 & 3D

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact INI IT.

This talk has been canceled/deleted

We investigate the self-organization of patchy colloidal particles deposited on flat substrates in three (2+1) and two (1+1) spatial dimensions. We propose and use a simple stochastic model for the interaction between the particles, which allows the simulation of very large systems, to probe the long time and large-scale structure of the deposited films. The latter exhibit well defined surface, liquid and interfacial regions except when the growth is dominated by the formation of chains, which occurs for systems with an effective valence close to two. We also investigate the interfacial roughening in (1+1) systems and compare our results with those obtained experimentally for evaporating droplets. We find, in line with the experiments, that when the film growth is dominated by chains the generic Kardar-Parisi-Zhang (KPZ) interfacial roughening is replaced by quenched KPZ . We discuss this somewhat surprising result.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

This talk is not included in any other list

Note that ex-directory lists are not shown.


© 2006-2022, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity