University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > Discrete Vector Bundles with Connection and the First Chern Class

Discrete Vector Bundles with Connection and the First Chern Class

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact info@newton.ac.uk.

GCSW02 - Structure preservation and general relativity

The use of differential forms in general relativity requires ingredients like the covariant exterior derivative and curvature. One potential approach to numerical relativity would require discretizations of these ingredients. I will describe a discrete combinatorial theory of vector bundles with connections. The main operator we develop is a discrete covariant exterior derivative that generalizes the coboundary operator and yields a discrete curvature and a discrete Bianchi identity. We test this theory by defining a discrete first Chern class, a topological invariant of vector bundles. This discrete theory is built by generalizing discrete exterior calculus (DEC) which is a discretization of exterior calculus on manifolds for real-valued differential forms. In the first part of the talk I will describe DEC and its applications to the Hodge-Laplace problem and Navier-Stokes equations on surfaces, and then I will develop the discrete covariant exterior derivative and its implications. This is joint work with Daniel Berwick-Evans and Mark Schubel.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2019 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity