University of Cambridge > Talks.cam > Lennard-Jones Centre > Non-equilibrium phase separation with reactions

Non-equilibrium phase separation with reactions

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Dr Christoph Schran.

This talk will be in hybrid format. Virtual access via: https://zoom.us/j/92447982065?pwd=RkhaYkM5VTZPZ3pYSHptUXlRSkppQT09

Materials undergoing both phase separation and chemical reactions form an important class of non-equilibrium systems. Examples range from suspensions of self-propelled bacteria with birth-death dynamics, to bio-molecular condensates, or ‘membraneless organelles’, within cells. In contrast to their passive counterparts, such systems have conserved and non-conserved dynamics that do not, in general, derive from a shared free energy. This mismatch breaks time-reversal symmetry and leads to new types of dynamical competition that are absent in or near equilibrium. We construct a canonical scalar field theory to describe such systems, with conserved and non-conserved dynamics obeying Model B and Model A respectively (in the Hohenberg-Halperin classification), chosen such that the two free energies involved are incompatible. The resulting minimal model is shown to capture the various phenomenologies reported previously for more complicated models with the same physical ingredients, including microphase separation, limit cycles and droplet splitting. We find a low-dimensional subspace of parameters for which time-reversal symmetry is accidentally recovered, and show that here the dynamics of the order parameter field (but not its conserved current) is exactly the same as an equilibrium system in which microphase separation is caused by long-range attractive interactions.

This talk is part of the Lennard-Jones Centre series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2022 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity