University of Cambridge > Talks.cam > Geometric Analysis and Partial Differential Equations seminar > $C^{1, \alpha}$ theory for the prescribed mean curvature equation with Dirichlet data

$C^{1, \alpha}$ theory for the prescribed mean curvature equation with Dirichlet data

Add to your list(s) Download to your calendar using vCal

  • UserTheodora Bourni (AEI, Potsdam)
  • ClockMonday 23 February 2009, 16:00-17:00
  • HouseCMS, MR13.

If you have a question about this talk, please contact Prof. Mihalis Dafermos.

I will discuss regularity of solutions of the prescribed mean curvature equation over a general domain that do not necessarily attain the given boundary data. The work of E.Giusti and others, establishes a very general existence theory of solutions with “unattained Dirichlet data” by minimizing an appropriately defined functional, which includes information about the boundary data. We can naturally associate to such a solution a current, which inherits a natural minimizing property. The main goal is to show that its support is a $C{1,\alpha}$ manifold-with-boundary, with boundary equal to the prescribed boundary data, provided that both the initial domain and the prescribed boundary data are of class $C^{1,\alpha}$.

Furthermore, as a consequence, I will discuss some interesting results about the trace of such a solution; in particular for a large class of boundary data with jump discontinuities, the trace has a jump discontinuity along which it attaches to the vertical part of the prescribed boundary.

This talk is part of the Geometric Analysis and Partial Differential Equations seminar series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2019 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity