COOKIES: By using this website you agree that we can place Google Analytics Cookies on your device for performance monitoring. |

## On the mixing time of random conjugacy walksAdd to your list(s) Download to your calendar using vCal - Nathanael Berestycki (Cambridge).
- Monday 26 January 2009, 14:00-15:00
- MR12, CMS, Wilberforce Road, Cambridge, CB3 0WB.
If you have a question about this talk, please contact Julia Blackwell. Let G be a finite graph and consider a random walk on this graph. How long does it take for this walk to be well mixed, i.e., to be close to its equilibrium distribution? A striking phenomenon, discovered in the early 80’s by Aldous and Diaconis independently, is that convergence to equilibrium often occurs abruptly: this is known as the cutoff phenomenon. In this talk we shall consider the classical example of random transpositions over the symmetric group. In this case, Diaconis and Shahshahani used representation theory to prove that such a cutoff occurs at time (1/2) n log n. We present a new, probabilistic proof of this result, which extends readily to other walks where the step distribution is uniform over a given conjugacy class. This proves a conjecture of Roichman (1996) that the mixing time of this process is (1/C) n log n, where C is the size of the conjugacy class. This is joint work with Oded Schramm and Ofer Zeitouni This talk is part of the Probability series. ## This talk is included in these lists:- All CMS events
- All Talks (aka the CURE list)
- CMS Events
- DPMMS Lists
- DPMMS info aggregator
- DPMMS lists
- MR12, CMS, Wilberforce Road, Cambridge, CB3 0WB
- Probability
- School of Physical Sciences
- Statistical Laboratory info aggregator
Note that ex-directory lists are not shown. |
## Other listsMental Health Week 2013 Fluid Mechanics (DAMTP) Workshop on Multimodal Approaches to Language Acquisition## Other talksA rose by any other name Curiosity on Mars – exploring through the eyes of a rover Rothschild Lecture: Thomson's 5 point problem Dr David Komander: Studying non-existent ubiquitin chains Unknowns of energy concentrating phenomena Solution principles for next-generation text entry |