COOKIES: By using this website you agree that we can place Google Analytics Cookies on your device for performance monitoring. |

## On the mixing time of random conjugacy walksAdd to your list(s) Download to your calendar using vCal - Nathanael Berestycki (Cambridge).
- Monday 26 January 2009, 14:00-15:00
- MR12, CMS, Wilberforce Road, Cambridge, CB3 0WB.
If you have a question about this talk, please contact Julia Blackwell. Let G be a finite graph and consider a random walk on this graph. How long does it take for this walk to be well mixed, i.e., to be close to its equilibrium distribution? A striking phenomenon, discovered in the early 80’s by Aldous and Diaconis independently, is that convergence to equilibrium often occurs abruptly: this is known as the cutoff phenomenon. In this talk we shall consider the classical example of random transpositions over the symmetric group. In this case, Diaconis and Shahshahani used representation theory to prove that such a cutoff occurs at time (1/2) n log n. We present a new, probabilistic proof of this result, which extends readily to other walks where the step distribution is uniform over a given conjugacy class. This proves a conjecture of Roichman (1996) that the mixing time of this process is (1/C) n log n, where C is the size of the conjugacy class. This is joint work with Oded Schramm and Ofer Zeitouni This talk is part of the Probability series. ## This talk is included in these lists:- All CMS events
- All Talks (aka the CURE list)
- CMS Events
- DPMMS Lists
- DPMMS info aggregator
- DPMMS lists
- MR12, CMS, Wilberforce Road, Cambridge, CB3 0WB
- Probability
- School of Physical Sciences
- Statistical Laboratory info aggregator
Note that ex-directory lists are not shown. |
## Other listsRCEAL Tuesday Colloquia Occasional neuroscience talks Commercialisation Seminar Series## Other talksThe German Reaction to Fukushima Optimal Design and Operation under Uncertainty: Application to Polymerization Processes AGN Coronae in the NuSTAR Era "The game's afoot!": Mobility as method in Sherlockian fandom, 1970-1990 switchSENSE DNA nanolever technology Building Bridges in Medical Sciences |