University of Cambridge > > Centre for Atmospheric Science seminars, Chemistry Dept. > Ocean iron-fertilisation by volcanic ash

Ocean iron-fertilisation by volcanic ash

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Dr Glenn Carver.

Marine primary productivity (MPP) can be limited by the availability of macro-nutrients like nitrate and phosphate. In so-called ‘High-Nutrient-Low-Chlorophyll’ (HNLC) areas, macro-nutrient concentrations are high, but iron is the key biologically limiting micro-nutrient for primary production. Three major sources for iron supply into the ocean have been considered so far: upwelling of deep ocean water, advection from the continental margins and atmospheric deposition with aeolian dust deposition commonly assumed to dominate external iron supply to the open ocean. Iron supply to HNLC regions can affect climate relevant ocean-atmosphere exchanges of chemical trace species, e.g. organic carbon aerosols, DMS and CO2 . Marine aerosols can act as efficient cloud condensation nuclei and significantly influence cloud properties and thus the Earth’s radiative budget via the indirect aerosol effects whereas a drawdown of atmospheric CO2 due to ocean fertilisation can have important implications for the global CO2 budget. Recent laboratory experiments suggest that material from volcanic eruptions such as ash may also affect the MPP through rapid iron-release on contact with seawater. Direct evidence, however, that volcanic activity can cause natural iron-fertilisation and MPP increase has been lacking so far. Here first evidence for a large-scale phytoplankton bloom resulting from volcanic ash fall is presented.

This talk is part of the Centre for Atmospheric Science seminars, Chemistry Dept. series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2023, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity