University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > Annihilating tate-shafarevic groups

Annihilating tate-shafarevic groups

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Mustapha Amrani.

Non-Abelian Fundamental Groups in Arithmetic Geometry

We describe how main conjectures in non-commutative Iwasawa theory lead naturally to the (conjectural) construction of a family of explicit annihilators of the Bloch-Kato-Tate-Shafarevic Groups that are attached to a wide class of p-adic representations over non-abelian extensions of number fields. Concrete examples to be discussed include a natural non-abelian analogue of Stickelberger’s Theorem (which is proved) and of the refinement of the Birch and Swinnerton-Dyer Conjecture due to Mazur and Tate. Parts of this talk represent joint work with James Barrett and Henri Johnston.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2017 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity