University of Cambridge > Talks.cam > Microsoft Research Cambridge, public talks > Polynomial Learning of Distribution Families

Polynomial Learning of Distribution Families

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Microsoft Research Cambridge Talks Admins.

The study of Gaussian mixture distributions goes back to the late 19th century, when Pearson introduced the method of moments to analyze the statistics of a crab population. They have since become one of the most popular tools of modeling and data analysis, extensively used in speech recognition, computer vision and other fields. Yet their properties are still not well understood.

In my talk I will discuss some theoretical aspects of the problem of learning Gaussian mixtures. In particular, I will discuss our recent result with Mikhail Belkin, which, in a certain sense, completes work on an active recent topic in theoretical computer science by establishing quite general conditions for polynomial learnability of mixture distributions.

This talk is part of the Microsoft Research Cambridge, public talks series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2019 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity