University of Cambridge > > Isaac Newton Institute Seminar Series > An inverse problem in quantum statistical physics

An inverse problem in quantum statistical physics

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Mustapha Amrani.

Partial Differential Equations in Kinetic Theories

We address the following inverse problem in quantum statistical physics: does the quantum free energy (von Neumann entropy + kinetic energy) admit a unique minimizer among the density operators having a given local density $n(x)$? We give a positive answer to that question, in dimension one. This enables to define rigourously the notion of local quantum equilibrium, or quantum Maxwellian, which is at the basis of recently derived quantum hydrodynamic models and quantum drift-diffusion models. We also characterize this unique minimizer, which takes the form of a global thermodynamic equilibrium (canonical ensemble) with a quantum chemical potential.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2021, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity