University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > Medical Morphometry using Computational Quasiconformal Geometry

Medical Morphometry using Computational Quasiconformal Geometry

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Mustapha Amrani.

Inverse Problems

Medical morphometry is an important area in medical imaging for disease analysis. Its goal is to systematically analyze anatomical structures of different subjects, and to generate diagnostic images to help doctors to visualize abnormalities. Quasiconformal(QC) Teichmuller theory, which studies the distortions of the deformation patterns between shapes, has become an important tool for this purpose. In practice, objects are usually represented discretely by triangulation meshes. In this talk, I will firstly describe how quasi-conformal geometry can be discretized onto discrete meshes. This gives a discrete analogue of QC geometry on discrete meshes which represent anatomical structures. Then, I will talk about how computational QC geometry can been applied to practical applications in medical shape analysis.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2019 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity