University of Cambridge > Talks.cam > Computer Laboratory Systems Research Group Seminar > On User Availability Prediction And Network Applications

On User Availability Prediction And Network Applications

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Eiko Yoneki.

User connectivity patterns in network applications are known to be heterogeneous, and to follow periodic (daily and weekly) patterns. In many cases, the regularity and the correlation of those patterns is problematic: for network applications, many connected users create peaks of demand; in peer-to-peer scenarios, having few users online additionally results in a scarcity of available resources.

On the other hand, since connectivity patterns exhibit a periodic behavior, they are to some extent predictable. This work shows how this can be exploited to anticipate future user connectivity and to have applications proactively responding to it. We evaluate the probability that any given user will be online at any given time, and assess the prediction on six-month availability traces from three different Internet applications.

Building upon this, we show how our probabilistic approach makes it easy to evaluate and optimize the performance in a number of diverse network application models, and to use them to optimize systems. In particular, we show how this approach can be used in distributed hash tables, friend-to-friend storage, and cache pre-loading for social networks, resulting in substantial gains in data availability and system efficiency at negligible costs.

This talk is part of the Computer Laboratory Systems Research Group Seminar series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2020 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity