COOKIES: By using this website you agree that we can place Google Analytics Cookies on your device for performance monitoring. |

## p-adic Geometric LanglandsAdd to your list(s) Download to your calendar using vCal - Alexander Paulin (King's College London)
- Tuesday 27 November 2012, 14:30-15:30
- MR13.
If you have a question about this talk, please contact Teruyoshi Yoshida. The (de Rham) geometric Langlands correspondence for GL(n) asserts that to an irreducible rank n integrable connection on a complex smooth projective curve X, we may naturally associate a D-module on Bun_n(X), the moduli stack of rank n vector bundles on X. Making appropriate changes to the formulation there are also Betti and l-adic versions of the above correspondence. In this talk we consider the rigid (and ultimately motivic) side of the story. In particular we conjecture the existence of a p-adic geometric Langlands correspondence relating rank n F-isocrystals on X (now a curve over F_p) to arithmetic D-modules on Bun_n(X). We will also explore the potential of a motivic version of the GLC which should specialize to each of the above correspondences under appropriate realisations. We will assume no specific background in the geometric Langlands correspondence. This talk is part of the Number Theory Seminar series. ## This talk is included in these lists:- All CMS events
- All Talks (aka the CURE list)
- CMS Events
- DPMMS Lists
- DPMMS Pure Maths Seminar
- DPMMS info aggregator
- DPMMS lists
- MR13
- Number Theory Seminar
- School of Physical Sciences
Note that ex-directory lists are not shown. |
## Other listsMathematics Rainbow Interaction Seminars Algebraic Geometry Seminar## Other talksThe propaganda of death: Italy's Fascist ossuaries of the First World War Rumours, Diseases and Drugs: Tackling Textual Data for Knowledge Discovery in Health 'Cultural Narratives of Dementia and Care in Post-War Japan' Prof Hans Wendel - title TBC Dr Piero Mastroeni: Immunity and vaccination to invasive Salmonella infections: How can we integrate the lessons from animal models and man? Pattern formation in confined nematic systems: the interplay between geometry, anisotropy and singularities |