University of Cambridge > Talks.cam > Machine Learning @ CUED > Modelling Reciprocating Relationships with Hawkes Processes

Modelling Reciprocating Relationships with Hawkes Processes

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Zoubin Ghahramani.

We present a Bayesian nonparametric model that discovers implicit social structure from interaction time-series data. Social groups are often formed implicitly, through actions among members of groups. Yet many models of social networks use explicitly declared relationships to infer social structure. We consider a particular class of Hawkes processes, a doubly stochastic point process, that is able to model reciprocity between groups of individuals. We then extend the Infinite Relational Model by using these reciprocating Hawkes processes to parameterise its edges, making events associated with edges co-dependent through time. Our model outperforms general, unstructured Hawkes processes as well as structured Poisson process-based models at predicting verbal and email turn-taking, and military conflicts among nations.

This talk is part of the Machine Learning @ CUED series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2014 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity