COOKIES: By using this website you agree that we can place Google Analytics Cookies on your device for performance monitoring. |

University of Cambridge > Talks.cam > Fluid Mechanics (CUED) > Two-phase gravity currents containing a finite volume of fluid

## Two-phase gravity currents containing a finite volume of fluidAdd to your list(s) Download to your calendar using vCal - Dr Madeleine Golding, DAMTP
- Friday 07 June 2013, 13:00-14:15
- LR3B, Inglis building..
If you have a question about this talk, please contact ROBERTA TRUPIANO. Sandwiches provided at 13:00, seminar begins 13:15. I will present a model for a two-phase gravity current resulting from the release of a finite volume of fluid into a porous medium saturated with a second, immiscible fluid. The scenario is motivated by the geological storage of carbon dioxide (CO2), or the aftermath of a chemical spill. As it spreads, the fluid in a two-phase gravity current only partially displaces the ambient fluid, leading to a non-uniform saturation distribution. This is the key difference from its single-phase counterpart and gives rise to quite different behaviour. The three key physical two-phase phenomena incorporated by the model are capillary pressure and relative permeability, which are functions of saturation, and residual trapping, which depends on the historical evolution of the saturation distribution. When a finite volume spreads, such as a volume of CO2 after injection has ceased, the gravity current is particularly complex to model because the height of the current increases towards the front and recedes in the middle. This leads to different capillary pressure and relative permeability curves in the two regions within the same current, which must be modelled consistently. Particularly interesting to the geological storage of CO2 is residual trapping, where fluid is left immobilised behind the receding boundary, and I will present a very interesting result which shows that the choice of trapping model can determine whether the model predicts an infinitely spreading gravity current, or one that will eventually stop! This talk is part of the Fluid Mechanics (CUED) series. ## This talk is included in these lists:- Acoustics Lab Seminars
- Engineering Department Acoustics/Combustion Student seminars
- Fluid Mechanics (CUED)
- LR3B, Inglis building.
Note that ex-directory lists are not shown. |
## Other listsDambusters: the engineering behind the bouncing bomb Science MEMS## Other talksEnvironmental diversity of Architecture Predicting Intra-Day Load Profiles under Time-Of-Use Tariffs Using Smart Meter Data Organoids - making organs in a dish New frontiers in PDF determinations: NNPDF3.1 The role of law in energy transitions: lessons from community renewables Image Analysis Tools |