University of Cambridge > Talks.cam > Microsoft Research Cambridge, public talks > Proving Equivalences Between Prolog Semantics in Coq

Proving Equivalences Between Prolog Semantics in Coq

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Microsoft Research Cambridge Talks Admins.

This event may be recorded and made available internally or externally via http://research.microsoft.com. Microsoft will own the copyright of any recordings made. If you do not wish to have your image/voice recorded please consider this before attending

Basing program analyses on formal semantics has a long and successful tradition in the logic programming paradigm. These analyses rely on results about the relative correctness of mathematically sophisticated semantics, and authors of such analyses often invest considerable effort into establishing these results. The development of interactive theorem provers such as Coq and their recent successes both in the field of program verification as well as in mathematics, poses the question whether these tools can be usefully deployed in logic programming. This paper presents formalisations in Coq of several general results about the correctness of semantics in different styles; forward and backward, top-down and bottom-up. The results chosen are paradigmatic of the kind of correctness theorems that semantic analyses rely on and are therefore well-suited to explore the possibilities afforded by the application of interactive theorem provers to this task, as well as the difficulties likely to be encountered in the endeavour. It turns out that the advantages offered by moving to a functional setting, including the possibility to apply higher-order abstract syntax, are considerable.

This talk is part of the Microsoft Research Cambridge, public talks series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2019 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity