University of Cambridge > Talks.cam > Microsoft Research Cambridge, public talks > How Watson Learns Superhuman Jeopardy! Strategies

How Watson Learns Superhuman Jeopardy! Strategies

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Microsoft Research Cambridge Talks Admins.

This event may be recorded and made available internally or externally via http://research.microsoft.com. Microsoft will own the copyright of any recordings made. If you do not wish to have your image/voice recorded please consider this before attending

Major advances in Question Answering technology were needed for Watson to play Jeopardy! at championship level—the show requires rapid-fire answers to challenging natural language questions, broad general knowledge, high precision, and accurate confidence estimates. In addition, Jeopardy! features four types of decision making carrying great strategic importance: (1) selecting the next clue when in control of the board; (2) deciding whether to attempt to buzz in; (3) wagering on Daily Doubles; (4) wagering in Final Jeopardy. This talk describes how Watson makes the above decisions using innovative quantitative methods that, in principle, maximize Watson’s overall winning chances. We first describe our development of faithful simulation models of human contestants and the Jeopardy! game environment. We then present specific learning/optimization methods used in each strategy algorithm: these methods span a range of popular AI research topics, including Bayesian inference, game theory, Dynamic Programming, Reinforcement Learning, and real-time “rollouts.” Application of these methods yielded superhuman game strategies for Watson that significantly enhanced its overall competitive record.

Joint work with David Gondek, Jon Lenchner, James Fan and John Prager.

This talk is part of the Microsoft Research Cambridge, public talks series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2019 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity