University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > Simultaneous dense and nondense orbits for commuting maps

Simultaneous dense and nondense orbits for commuting maps

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Mustapha Amrani.

Interactions between Dynamics of Group Actions and Number Theory

We show that, for two commuting automorphisms of the d-torus, many points have drastically different orbit structures for the two maps. Specifically, using measure rigidity, the Ledrappier-Young formula, and the Marstrand slicing theorem, we show that the set of points that have dense orbit under one map and nondense orbit under the other has full Hausdorff dimension. This mixed case, dense orbit under one map and nondense orbit under the other, is much more delicate than the other two possible cases. Our technique can also be applied to other settings. For example, we show the analogous result for two elements of the Cartan action on compact higher rank homogeneous spaces. This is joint work with V. Bergelson and M. Einsiedler.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2019 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity