University of Cambridge > Talks.cam > Engineering Department Geotechnical Research Seminars > Rocking Isolation for bridges and buildings: analysis, experiments, and new concepts to minimize permanent deformation

Rocking Isolation for bridges and buildings: analysis, experiments, and new concepts to minimize permanent deformation

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Anama Lowday.

According to current seismic codes, the foundation soil is not allowed to fully mobilize its strength, and plastic deformation is restricted to above-ground structural members. Capacity design is applied to the foundation guiding failure to the superstructure, thus prohibiting mobilization of soil bearing capacity. However, a significant body of evidence suggests that allowing strongly nonlinear foundation response may be advantageous. The lecture will introduce an alternative seismic design philosophy termed rocking isolation, in which soil yielding is used as a “fuse”. According to such a scheme, the foundation is intentionally under-designed to uplift and fully mobilize its bearing capacity, limiting the inertia transmitted onto the superstructure. To unravel the effectiveness of rocking isolation, an idealized bridge pier is used as an illustrative example. A conventionally designed system is compared with a rocking–isolated alternative. Their seismic performance is explored analytically, through nonlinear finite element analyses, and experimentally, through shaking table and centrifuge model testing. A similar comparison is performed for an existing 3-storey building, designed and constructed according to obsolete seismic codes, and retrofitted by adding shear walls. Emphasis is placed on the foundation of the shear walls, comparing conventional design with rocking isolation. The physical model encompasses the structural system, along with the foundations, and the soil. The nonlinearity of structural members is simulated through specially–designed and carefully calibrated artificial plastic hinges. The vulnerability of the original structure is confirmed, as it is found to collapse with a soft-storey mechanism when subjected to moderate intensity seismic shaking. The conventionally retrofitted structure is proven capable of sustaining larger intensity shaking, and the rocking–isolated structure is shown to offer increased safety margins. Finally, novel concepts are introduced, aiming to reduce the permanent rotations and settlements.

Biography: Professor Ioannis Anastasopoulos, Chair of Civil Engineering at the University of Dundee, specializes in geotechnical earthquake engineering and soil–structure interaction, combining numerical with experimental methods. His academic degrees include a PhD from the National Technical University of Athens (NTUA), a MSc from Purdue University, and a Civil Engineering Diploma from NTUA . His publication record includes 65 publications in refereed journals, and 120 more in books and conference proceedings. Ioannis also has extensive professional experience, as he has worked in a variety of projects of significance in Greece, but also in the US (Queensboro bridge), and the Middle East (over 70 Technical Reports). His consulting work ranges from special seismic design of bridges, buildings, retaining walls, metro stations and tunnels, to harbor quay walls (all major ports of Greece), and special design against faulting–induced deformation applying the methods he developed during and after his PhD. He is the Associate Editor of Frontiers in Earthquake Engineering (Nature Publishing Group), Editorial Board Member of Géotechnique and ICE –Geotechnical Engineering, and he has given several Keynote and Invited talks at international conferences, as well as academic and industrial institutions. Ioannis is the inaugural recipient of the Young Researcher Award of the ISSMGE in Geotechnical Earthquake Engineering, and winner of the 2012 Shamsher Prakash Research Award.

This talk is part of the Engineering Department Geotechnical Research Seminars series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity