University of Cambridge > > Isaac Newton Institute Seminar Series > Mining differential correlation

Mining differential correlation

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact INI IT.

SNAW04 - Dynamic networks

Given data obtained under two sampling conditions, it is often of interest to identify variables that behave differently in one condition than in the other. The talk will describe a method for differential analysis of second-order behavior called Differential Correlation Mining (DCM). DCM is a special case of differential analysis for weighted networks, and is distinct from standard analyses of first order differential behavior, for example studies of differential expression.

The DCM method identifies differentially correlated sets of variables, with the property that the average pairwise correlation between variables in a set is higher under one sample condition than the other. DCM is based on an iterative testing procedure that adaptively updates the size and elements of a candidate variable set. Updates are performed via hypothesis testing of individual variables, based on the asymptotic distribution of their average differential correlation. The method does not assume that the sample or population correlation matrices are sparse, or have any particular structure.

I will present both simulation results and applications of DCM to genomics and brain imaging.  As time permits, I will also present a brief overview of some additional network related work being done with collaborators at UNC .

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2022, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity