University of Cambridge > Talks.cam > Thursday string seminars > "Thermal derivation of the Coleman-de Luccia tunnelling prescription"

"Thermal derivation of the Coleman-de Luccia tunnelling prescription"

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Joseph Conlon.

We derive the rate for transitions between de Sitter vacua by treating the field theory on the static patch as a thermal system. This reproduces the Coleman-De Luccia formalism for calculating the rate, but leads to a modified interpretation of the bounce solution and a different prediction for the evolution of the system after tunneling. The bounce is seen to correspond to a sequence of configurations interpolating between initial and final configurations on either side of the tunneling barrier, all of which are restricted to the static patch. The final configuration, which gives the initial data on the static patch for evolution after tunneling, is obtained from one half of a slice through the center of the bounce, while the other half gives the configuration before tunneling. The formalism makes no statement about the fields beyond the horizon. This approach resolves several puzzling aspects and interpretational issues concerning the Coleman-De Luccia and Hawking-Moss bounces. We work in the limit where the back reaction of matter on metric can be ignored, but argue that the qualitative aspects remain in the more general case. The extension to tunneling between anti-de Sitter vacua is discussed.

This talk is part of the Thursday string seminars series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity