University of Cambridge > Talks.cam > Microsoft Research Cambridge, public talks > Bayesian Generative Adversarial Networks

Bayesian Generative Adversarial Networks

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Microsoft Research Cambridge Talks Admins.

 Please note, this event may be recorded. Microsoft will own the copyright of any recording and reserves the right to distribute it as required.

Through an adversarial game, generative adversarial networks (GANs) can implicitly learn rich distributions over images, audio, and data which are hard to model with an explicit likelihood. I will present a practical Bayesian formulation for unsupervised and semi-supervised learning with GANs. Within this framework, we use a stochastic gradient Hamiltonian Monte Carlo for marginalizing parameters. The resulting approach can automatically discover complementary and interpretable generative hypotheses for collections of images. Moreover, by exploring an expressive posterior over these hypotheses, we show that it is possible to achieve state-of-the-art quantitative results on image classification benchmarks, even with less than 1% of the labelled training data.

This talk is part of the Microsoft Research Cambridge, public talks series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2017 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity