BEGIN:VCALENDAR
VERSION:2.0
PRODID:-//talks.cam.ac.uk//v3//EN
BEGIN:VTIMEZONE
TZID:Europe/London
BEGIN:DAYLIGHT
TZOFFSETFROM:+0000
TZOFFSETTO:+0100
TZNAME:BST
DTSTART:19700329T010000
RRULE:FREQ=YEARLY;BYMONTH=3;BYDAY=-1SU
END:DAYLIGHT
BEGIN:STANDARD
TZOFFSETFROM:+0100
TZOFFSETTO:+0000
TZNAME:GMT
DTSTART:19701025T020000
RRULE:FREQ=YEARLY;BYMONTH=10;BYDAY=-1SU
END:STANDARD
END:VTIMEZONE
BEGIN:VEVENT
CATEGORIES:Isaac Newton Institute Seminar Series
SUMMARY:Additivity of entropic uncertainty relations - Ren
é Schwonnek (Universität Hannover )
DTSTART;TZID=Europe/London:20180723T160000
DTEND;TZID=Europe/London:20180723T164500
UID:TALK108262AThttp://talks.cam.ac.uk
URL:http://talks.cam.ac.uk/talk/index/108262
DESCRIPTION:We consider the uncertainty between two pairs of l
ocal projective measurements performed on a multip
artite system. We show that the optimal bound in a
ny linear uncertainty relation\, formulated in ter
ms of the Shannon entropy\, is additive. This dire
ctly implies\, against naive intuition\, that the
minimal entropic uncertainty can always be realize
d by fully separable states. Hence\, in contradict
ion to proposals by other authors\, no entanglemen
t witness can be constructed solely by comparing t
he attainable uncertainties of entangled and separ
able states. However\, our result gives rise to a
huge simplification for computing global uncertain
ty bounds as they now can be deduced from local on
es. Furthermore\, we provide the natural generaliz
ation of the Maassen and Uffink inequality for lin
ear uncertainty relations with arbitrary positive
coefficients.

LOCATION:Seminar Room 1\, Newton Institute
CONTACT:INI IT
END:VEVENT
END:VCALENDAR