BEGIN:VCALENDAR
VERSION:2.0
PRODID:-//talks.cam.ac.uk//v3//EN
BEGIN:VTIMEZONE
TZID:Europe/London
BEGIN:DAYLIGHT
TZOFFSETFROM:+0000
TZOFFSETTO:+0100
TZNAME:BST
DTSTART:19700329T010000
RRULE:FREQ=YEARLY;BYMONTH=3;BYDAY=-1SU
END:DAYLIGHT
BEGIN:STANDARD
TZOFFSETFROM:+0100
TZOFFSETTO:+0000
TZNAME:GMT
DTSTART:19701025T020000
RRULE:FREQ=YEARLY;BYMONTH=10;BYDAY=-1SU
END:STANDARD
END:VTIMEZONE
BEGIN:VEVENT
CATEGORIES:Isaac Newton Institute Seminar Series
SUMMARY:A primal dual method for inverse problems in MRI w
ith non-linear forward operators - Valkonen\, T (U
niversity of Cambridge)
DTSTART;TZID=Europe/London:20140207T143000
DTEND;TZID=Europe/London:20140207T150000
UID:TALK50707AThttp://talks.cam.ac.uk
URL:http://talks.cam.ac.uk/talk/index/50707
DESCRIPTION:Co-authors: Martin Benning (University of Cambridg
e)\, Dan Holland (University of Cambridge)\, Lyn G
ladden (University of Cambridge)\, Carola-Bibiane
Schnlieb (University of Cambridge)\, Florian Knoll
(New York University)\, Kristian Bredies (Univers
ity of Graz)\n\nMany inverse problems inherently i
nvolve non-linear forward operators. In this talk\
, I concentrate on two examples from magnetic reso
nance imaging (MRI). One is modelling the Stejskal
-Tanner equation in diffusion tensor imaging (DTI)
\, and the other is decomposing a complex image in
to its phase and amplitude components for MR veloc
ity imaging\, in order to regularise them independ
ently. The primal-dual method of Chambolle and Poc
k being advantageous for convex problems where spa
rsity in the image domain is modelled by total var
iation type functionals\, I recently extended it t
o non-linear operators. Besides motivating the alg
orithm by the above applications\, through earlier
collaborative efforts using alternative convex mo
dels\, I will sketch the main ingredients for prov
ing local convergence of the method. Then I will d
emonstrate very promising numerical performance. \
n
LOCATION:Seminar Room 1\, Newton Institute
CONTACT:Mustapha Amrani
END:VEVENT
END:VCALENDAR