University of Cambridge > > Isaac Newton Institute Seminar Series > Beating the Curse of Dimensionality: A Theoretical Analysis of Deep Neural Networks and Parametric PDEs

Beating the Curse of Dimensionality: A Theoretical Analysis of Deep Neural Networks and Parametric PDEs

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact INI IT.

ASCW03 - Approximation, sampling, and compression in high dimensional problems

High-dimensional parametric partial differential equations (PDEs) appear in various contexts including control and optimization problems, inverse problems, risk assessment, and uncertainty quantification. In most such scenarios the set of all admissible solutions associated with the parameter space is inherently low dimensional. This fact forms the foundation for the so-called reduced basis method.

Recently, numerical experiments demonstrated the remarkable efficiency of using deep neural networks to solve parametric problems. In this talk, we will present a theoretical justification for this class of approaches. More precisely, we will derive upper bounds on the complexity of ReLU neural networks approximating the solution maps of parametric PDEs. In fact, without any knowledge of its concrete shape, we use the inherent low-dimensionality of the solution manifold to obtain approximation rates which are significantly superior to those provided by classical approximation results. We use this low-dimensionality to guarantee the existence of a reduced basis. Then, for a large variety of parametric PDEs, we construct neural networks that yield approximations of the parametric maps not suffering from a curse of dimensionality and essentially only depending on the size of the reduced basis.

This is joint work with Philipp Petersen (Oxford), Mones Raslan, and Reinhold Schneider.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2021, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity