University of Cambridge > > Isaac Newton Institute Seminar Series > Chiral symmetry breaking and defects in confined nematics

Chiral symmetry breaking and defects in confined nematics

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Almarie Williams.

The Mathematics of Liquid Crystals

We analyze the complex nematic textures and defect structures that result from the competition between topological constraints and the elasticity of nematic liquid crystals confined in droplets with handles stabilized against surface-tension-driven instabilities using a yield-stress material as outer fluid. We uncover a surprisingly persistent twisted configuration of the nematic director inside the droplets when tangential anchoring is established at their boundaries, which we explain after considering the influence of saddle-splay on the elastic free energy. For toroidal droplets, we find that the saddle-splay energy screens the twisting energy resulting in a spontaneous breaking of mirror symmetry; the chiral twisted state persists for aspect ratios as large as ~20. For droplets with additional handles, two additional -1 surface defects per handle are generated in regions with local saddle geometry.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2020, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity