University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > Hyperbolic geometry in liquid crystalline interfaces

Hyperbolic geometry in liquid crystalline interfaces

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Almarie Williams.

The Mathematics of Liquid Crystals

Fluid interfaces, such as soap films, liquid droplets, or lipid membranes, are known to give rise to several special geometries, whose complexity and beauty continue to fascinate us, as observers of the natural world, and challenge us as scientists. Here I show that a special class of surfaces of constant negative Gaussian curvature can be obtained in fluid interfaces equipped with an orientational ordered phase. These arise in various soft and biological materials, such as nematic liquid crystals, cytoskeletal assemblies, or hexatic colloidal suspensions. The purely hyperbolic morphology originates from the competition between surface tension, that reduces the area of the interface at the expense of increasing its Gaussian curvature, and the orientational elasticity of the ordered phase, that in turn suffers for the distortion induced by the underlying curvature.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2020 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity