University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > A holographic model of the Kondo effect

A holographic model of the Kondo effect

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Mustapha Amrani.

Mathematics and Physics of the Holographic Principle

Coauthors: C. Hoyos (Tel Aviv Univ.), A. O’Bannon (DAMTP Cambridge), J. Wu (NCTS Taiwan)

We propose a holographic model of the Kondo effect, i.e. of the screening of a magnetic impurity coupled to a bath of conduction electrons at low temperatures. In a (1+1)-dimensional CFT description, this corresponds to an RG flow from an UV to an IR fixed point triggered by a marginally relevant (0+1)-dimensional operator. In the large N limit, with spin SU(N) and charge U(1) symmetries, the Kondo effect appears as a mean-field phase transition in which the U(1) symmetry is spontaneously broken. Inspired by a top-down brane model, we model the Kondo RG flow by an AdS_3 Chern-Simons action coupled to an AdS_2 holographic superconductor. We observe several characteristic features of the Kondo effect in this model, such as dynamical scale generation and a phase shift. Moreover, we find a power-law behaviour of the resistivity with temperature which is consistent with over-screening. Our model may serve as a basis for investigating more involved problems such as Kondo lattices.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity