University of Cambridge > > Isaac Newton Institute Seminar Series > Nonparametric change-point detection with sparse alternatives

Nonparametric change-point detection with sparse alternatives

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Mustapha Amrani.

Inference for Change-Point and Related Processes

We consider the problem of detecting the change in mean in a sequence of Gaussian vectors. We assume that the change happens only in some of the components of the vector. We construct a nonparametric testing procedure that is adaptive to the number of changing components. Under high-dimensional assumptions we obtain the detection boundary and show the rate optimality of the test.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2022, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity