University of Cambridge > Talks.cam > Experimental and Computational Aspects of Structural Biology and Applications to Drug Discovery > Using evolutionary sequence variation to make inferences about protein structure and function

Using evolutionary sequence variation to make inferences about protein structure and function

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact xyp20.

Abstract: The explosive growth in the number of protein sequences gives rise to the possibility of using natural variation in sequences of homologous proteins to find residues that control different protein phenotypes. Because in many cases phenotypic changes are controlled by a group of residues, the mutations that separate one phenotype from another will be correlated. We show that correlations between amino acid mutations at different sites in a protein can be used to predict, de novo, tertiary protein structure of both globular and transmembrane proteins from large sequence alignments.

In addition, residues that determine the specificity of protein interactions can be identified from inter-protein residue pairs that co-vary. Those amino acids whose mutation patterns are most highly constrained by evolution are found to often involve known functional sites of proteins, such as enzyme active sites, and ligand binding sites. These findings raise questions about the relationship between protein structure and function, and the evolutionary constraints that this relationship imposes on different proteins.

This talk is part of the Experimental and Computational Aspects of Structural Biology and Applications to Drug Discovery series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2022 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity