University of Cambridge > Talks.cam > Signal Processing and Communications Lab Seminars > Scalable inference for a full multivariate stochastic volatility model

Scalable inference for a full multivariate stochastic volatility model

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Dr Ramji Venkataramanan.

We introduce a multivariate stochastic volatility model for asset returns that imposes no restrictions to the structure of the volatility matrix and treats all its elements as functions of latent stochastic processes. When the number of assets is prohibitively large, we propose a factor multivariate stochastic volatility model in which the variances and correlations of the factors evolve stochastically over time. Inference is achieved via a carefully designed feasible andscalable Markov chain Monte Carlo algorithm that combines two computationally important ingredients: it utilizes invariant to the prior Metropolis proposal densities for simultaneously updating all latent paths and has quadratic, rather than cubic, computational complexity when evaluating the multivariate normal densities required. We apply our modelling and computational methodology to 571 stock daily returns of Euro STOXX index for data over a period of 10 years.

This talk is part of the Signal Processing and Communications Lab Seminars series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2020 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity