BEGIN:VCALENDAR
VERSION:2.0
PRODID:-//talks.cam.ac.uk//v3//EN
BEGIN:VTIMEZONE
TZID:Europe/London
BEGIN:DAYLIGHT
TZOFFSETFROM:+0000
TZOFFSETTO:+0100
TZNAME:BST
DTSTART:19700329T010000
RRULE:FREQ=YEARLY;BYMONTH=3;BYDAY=-1SU
END:DAYLIGHT
BEGIN:STANDARD
TZOFFSETFROM:+0100
TZOFFSETTO:+0000
TZNAME:GMT
DTSTART:19701025T020000
RRULE:FREQ=YEARLY;BYMONTH=10;BYDAY=-1SU
END:STANDARD
END:VTIMEZONE
BEGIN:VEVENT
CATEGORIES:CQIF Seminar
SUMMARY:Pure state separable transformations which are not
possible via LOCC &\; coarse-gaining of entang
lement classes - Martin Hebenstreit
DTSTART;TZID=Europe/London:20181025T141500
DTEND;TZID=Europe/London:20181025T151500
UID:TALK113155AThttp://talks.cam.ac.uk
URL:http://talks.cam.ac.uk/talk/index/113155
DESCRIPTION:Considering multipartite quantum systems\, entangl
ement is the resource to overcome the restriction
of operations to Local Operations assisted by Clas
sical Communication (LOCC). In order to study enta
nglement\, it is important to decide which LOCC tr
ansformations are possible. The maximally entangle
d set (MES) of states is the minimal set of n-part
ite pure states with the property that any truly n
-partite entangled pure state can be obtained dete
rministically via LOCC from some state in this set
. Hence\, this set contains the most useful states
for applications. Here\, we study entanglement in
three-qutrit systems and characterize the MES for
generic three-qutrit states. To this end\, we con
sider reachability via separable operations (SEP)\
, a class of operations that is strictly larger th
an LOCC. Interestingly\, we identify a family of p
ure states that can be obtained deterministically
via SEP but not via LOCC [1]. This gives an affirm
ative answer to the question of whether there is a
difference between SEP and LOCC for transformatio
ns among pure states. Finally\, we take a compleme
ntary approach and discuss a method to coarse-grai
n entanglement classes for 2xmxn systems [2]. \n\n
[1] M. Hebenstreit\, C. Spee\, and B. Kraus\, PRA
93\, 012339 (2016)\n[2] M. Hebenstreit\, M. Gachec
hiladze\, O. Gühne\, and B. Kraus\, PRA 97\, 03233
0 (2018)
LOCATION:MR4\, Centre for Mathematical Sciences\, Wilberfor
ce Road\, Cambridge
CONTACT:Johannes Bausch
END:VEVENT
END:VCALENDAR