BEGIN:VCALENDAR
VERSION:2.0
PRODID:-//talks.cam.ac.uk//v3//EN
BEGIN:VTIMEZONE
TZID:Europe/London
BEGIN:DAYLIGHT
TZOFFSETFROM:+0000
TZOFFSETTO:+0100
TZNAME:BST
DTSTART:19700329T010000
RRULE:FREQ=YEARLY;BYMONTH=3;BYDAY=-1SU
END:DAYLIGHT
BEGIN:STANDARD
TZOFFSETFROM:+0100
TZOFFSETTO:+0000
TZNAME:GMT
DTSTART:19701025T020000
RRULE:FREQ=YEARLY;BYMONTH=10;BYDAY=-1SU
END:STANDARD
END:VTIMEZONE
BEGIN:VEVENT
CATEGORIES:Isaac Newton Institute Seminar Series
SUMMARY:Solutions of the Bethe Ansatz Equations as Spectra
l Determinants - Davide Masoero (Universidade de L
isboa)
DTSTART;TZID=Europe/London:20221213T143000
DTEND;TZID=Europe/London:20221213T153000
UID:TALK193244AThttp://talks.cam.ac.uk
URL:http://talks.cam.ac.uk/talk/index/193244
DESCRIPTION:In 1998\, Dorey and Tateo discovered that the Beth
e Equations of the Quantum KdV model (an integrabl
e quantum field theory) are exact quantisation con
ditions for the spectrum of a certain quantum anha
rmonic oscillator (ODE/IM correspondence)\; moreov
er\, the eigenvalues of the latter operator should
coincide with the Bethe roots for the ground stat
e of \; Quantum KdV.\nIn 2004\, Bazhanov\, Luk
yanov & Zamolodhchikov conjectured that the Bethe
roots for every state of the model are the eigenva
lues of a linear differential operator\, namely an
anharmonic oscillator with a monster potential.\n
This corresponds to the fact that exact quantisati
on conditions are NOT sufficient to determine the
spectrum of a linear differential operator\, but m
ore information must be added\, namely which energ
y levels are occupied or not.\nIn this talk I prov
ide an outline of the proof &ndash\;conditional on
the existence of a certain Puiseux series &ndash\
; of the BLZ conjecture\, that I have recently obt
ained in collaboration with Riccardo Conti. In par
ticular\, I will present our large-momentum analys
is of the Destri-De Vega equation for the Quantum
KdV model\, which allows us to classify solutions
of the Bethe Equations.
LOCATION:Seminar Room 1\, Newton Institute
CONTACT:
END:VEVENT
END:VCALENDAR